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A method for treatment of the interaction between diffuse and Bragg scattering is developed. The 
treatment is based on the integral equation for scattering and follows a multiple-scattering approach; 
representation of the various terms by diagrams is found useful. General expressions for scattered 
intensity which take diffuse scattering into account in the first order, and include scattering of the incident 
beam and Bragg interactions between diffuse scattered beams to all orders, are derived. The two-beam 
case is discussed and a special three-beam case is compared with experiment. Extension to higher- 
order terms in the diffuse scattering is discussed. 

It is shown that the total intensity of diffuse scattering will be either enhanced or reduced when Bragg 
refiexions are excited by the incident beam. This is due to interference between diffuse scattering am- 
plitudes at corresponding points in different Brillouin zones; effects of this in disorder scattering are 
discussed. The relationship between this effect and anomalous absorption is pointed out with special 
reference to inelastic scattering. 

1. Introduction 

The distribution of diffuse scattering in electron dif- 
fraction experiments can be profoundly affected by 
Bragg scattering; the most well known effects are Ki- 
kuchi lines, and the clouds of inelastic scattering which 
are found around the Bragg spots as well as around the 
central spot. In the latter case it has been shown by 
Kamiya & Uyeda (1961) that the diffuse scattering 
has a definite phase relationship to the nearest Bragg 
reflexion and can be used to form an image. Recently Dr 
Watanabe in this laboratory has obtained more com- 
plicated patterns of diffuse scattering in cases where 
several Bragg reflexions are excited by the incident 
beam. Also, the study of diffuse scattering, especially 
due to disorder and thermal motion, is receiving in- 
creasing attention. 

The theory of interaction between diffuse and Bragg 
scattering (Takagi, 1958; Kainuma, 1955; Fujimoto 
& Kainuma, 1963; Fukuhara, 1963) has, to a large ex- 
tent, been developed on basis of the reciprocity theorem 
(v. Laue, 1948). The recent development of dynamic 
theories in electron diffraction based on a 'slice' ap- 
proach (see e.g. Cowley & Moodie, 1957 or Kato, 1963) 
suggests, however, that a reformulation of the general 
theory with the aim of bringing it into the same frame- 
work may be desirable. 

The purpose of the present work is to develop a gen- 
eral theory for the modification of the diffuse scat- 
tering on such a basis and with the specific aim of ex- 
plaining the detailed distribution of diffuse intensity 
when Bragg reflexions are excited by the incident beam. 

* On leave of absence from Department of Physics, Univer- 
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Effects involving interference between diffuse scattering 
amplitudes in different Brillouin zones are specifically 
discussed. 

2. General theory 

In this section we shall develop a slice formulation of 
the theory of diffuse scattering in crystals, at first 
through a direct and somewhat intuitive approach and 
thence demonstrate the validity of this from the inte- 
gral equation for scattering. Following the approach in 
a previous paper (1962) we shall include thermal and 
inelastic scattering by introducing the Coulomb inter- 
action, U(r, rj), between the incident electron, r, and 
the particles, r~, of the object in the Schr~Sdinger equa- 
tion for the scattered electron: 

{V2+k2+ U(r, rj)}~,(r, r j )=O,  (la) 

or in the corresponding integral equation 

~u(r, ry) = ~,°(r) + j'G(r, r~)U(r', rj)~,(r', r~)dr' 

G(r, r')=(2~z)-3f exp [iK(r-r')](x2-k2)-ldK. (lb) 

From the resulting wave function, ~u(r, rj), for the scat- 
tered electron the amplitude of elastic scattering and 
intensity of the total scattering is obtained in analogy 
with the expressions for elastic and inelastic ('inco- 
herent') form factors of atoms: 

~'(r)elastie = (~,(r, rj)>, ~U ~?om~ = (I ~u(r, rj)12) (2) 

where the averages are to be taken as ground state ex- 
pectation values or thermal averages for inelastic and 
thermal scattering respectively. The validity of this ap- 
proach, where the crystal variables, ry, are essentially 
treated as parameters will be discussed at the end of 
this section. 
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Let us first define a z direction close to the direction 
of the incident beam and to the entrance and exit sur- 
faces; we shall neglect back scattering and envisage the 
wavefield as propagating through slices normal to the 
z direction, as in the formulation of Cowley & Moodie 
(1957) and several later authors (see Kato, 1963). The 
wavefield is expressed as a sum of Bragg scattering 
terms and in addition a continuous range of diffuse 
scattering terms: 

g/(r) =Zg/h(z) exp [i(k0+h)r] 
+J'g/(s, z) exp [i(k0+s)r]ds. (3) 

These two types of term arise initially from two parts 
of the scattering potential, viz, a periodic part, U0 and 
a non-periodic part, Ua, respectively: 

U(r)= U0(r)+ Ua(r)=ZVh exp [ihr] 
+ j'v(s, z) exp [is0]ds, (4) 

v(s, z )=  J'f(s, 0 exp [i(z]d(, 
where the vectors Q and s in direct and reciprocal space 
are normal to the z axis. Ua and v(s, z) - and hence 
g/(s, z), and in higher orders also g/h - will usually des- 
cribe thermal or electronic fluctuations and contain the 
crystal variables, r:, according to (1). These may be 
suppressed at this stage, however, as they need only be 
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Fig. 1. (a) Diffuse scattering from the slice dzl, w a v e  vectors for 

Bragg and diffuse scattering. (b) Diagrams representing a 
term in equation (5b). Full-line arrow represents diffuse, bro- 
ken arrows Bragg scattering. 

introduced in the final stage of the calculation as indic- 
ated in equation (2). 

An expression for the amplitude of diffuse scattering 
correct to the first order in Ue and including Bragg 
scattering to all orders can now be formulated. Refer- 
ring to Fig. l(a), let us find the contribution to the 
amplitude of diffuse scattering from the Fourier com- 
ponent v(s, z) of Ue within the slice (Zs, dzl + zl). The 
wavefield incident on this slice is given by the first sum 
in equation (3); we note that the amplitudes, g/h, equal 
the elements Sh0(k0, z) of the scattering matrix (Fuji- 
moto, 1959; Niehrs, 1959) corresponding to the direc- 
tion k0 of the incident wave and the crystal thickness 
zl. Each of the waves, h, will be scattered by the s 
component of Ua within the slice and a set of waves 

(i/2k)v(s, zl)Sh0(k0, zl) exp [i(ko+h+s)r]dzl (5a) 

results. During the subsequent passage of these waves 
through the remaining part of the crystal, Bragg scat- 
tering will take place between them. The effect of this 
is described in the matrix formulation as a matrix pro- 
duct between the column vector corresponding to the 
waves (5a) and the matrix describing Bragg scattering 
in the slab Zs to z (final thickness) with the incident wave 
vector k0+ s. We obtain for the resulting set of waves 

( i /2k) .E Shg(ko +s ,  z -  zl) v (s, Zl)Sgo(ko, Zs) 
g xexp [i(ko+h+s)r]dzl. (5b) 

The amplitude of diffuse scattering towards k0 + h + s 
is now obtained by integrating (5b) over the whole 
thickness and adding together all contributions 
g/(h'+s')  for which h ' + s ' = h + s ;  

g/(h + s) = 27 27 Sh (k0 + s, z -  z)lS:+g, o (k0, zl) 
f g~o 

× v(s--g, Zl)dZl(i/2k), (6) 

where s now can be taken as a vector within the first 
BriUouin zone. Terms with g ~ 0  may be called 'um- 
klapp' terms. Equation (6) may be compared with the 
generalized form of the reciprocity theorem derived by 
Kainuma (1955). 

Before we proceed to the intensity expression, let us 
demonstrate how (6) follows from the integral equation 
for scattering (lb), which we take in the form (A2) 
(Appendix I). Upon introducing the expressions (3) and 
(4) for the amplitude and potential in this integral 
equation, we obtain 

g/(h+s, z )=  Z (i/2k) exp [i~,+h(z-zl)]{v(s 
g 0 

-g ,  Zs)g/h+g(zl)+ 2: Vhlg/(s+f, zD}dzl 
.r 

+ higher orders in Ua. 

Substitution of g/(h+s, z) from (6) in this equation 
leads to 
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f z SAy(z- zl)v(s-g,  Z1)~t f +g(Zl)dZ 1 
0 

: I~ exp [i(s+h(Z-- Zl)]V(s--g,Zl)~h+g(Zl)dZl 

+ (i/2k) X dz' dzl exp [i(~+s(z- z')] 
f 0 o 

Vhf, XH(- --zi) ,  
which is seen to be satisfied if 

Shj,(z-- zl)=Jhf exp [i(h+s(z-- zx)] 

+(i/2k) exp[i(h+s(z--z')]V~f, Sf, f(z'--zl)dz' 
Zl 

which is the equation for the matrix elements Shf~o + 
s ,  z -  z') introduced in equation (6). These elements con- 
nect the waves k0 + s + h, where s is a vector normal to 
the z axis. We may instead want to use a scattering 
matrix with a direct wavevector along k0+s but with 
length Ik01. The elements of such matrix will be 

S;,r(k0 + s, z -  zl) 
=Sn/(k0+s, z -z1)  exp [ - i ( s ( z - z l ) ]  ; (7) 

the corresponding wave vectors are indicated in 
Fig. l(a). 

The terms in the double summation in equation (6) 
can be represented by diagrams as shown in Fig. l(b); 
the arrows correspond to the Bragg scattering parts, 
0 ~ f + g  and f + s  ~ h+s ,  and to the diffuse scattering 
part f +  g --~ s + f Iv(s-  g)]. The summation corresponds 
to letting the two vertices f and g + s run through all 
BriUouin zones of the projection. Higher order terms in 
the diffuse scattering can be represented accordingly 
and hence written down readily. 

Let us now turn to the intensity expression. So far 
we have not made use of the fact that the scattering 
resulting from Ua is 'diffuse'; the amplitude expression 
(6) is, in fact, also valid for a set of crystalline reflexions 
h, + s weakly coupled to a strongly excited set of re- 
flexions hi. 

The intensity expression resulting from (6) will, in 
general, include a double integral over thickness, i.e. 
over contributions from different slices, dzt and dzl. 
The simplest way to introduce the diffuse nature of 
the scattering is to assume the diffuse scatterers to be 
independent over distances small compared with the 
Zl variation in the Bragg scattering matrix elements. 
Interference between scattering from different slices can 
then be neglected, and we obtain the intensity as an 
integral over intensity contributions from the slices. 
We can study this assumption in more detail by ex- 
pressing v(s, zx) etc. as sums over normal coordinates, 
lr=2nr/z and the scattering matrix elements as sums 
over the different branches j, of the dispersion surface. 
An expression similar to Fujimoto & Kainuma's (1963) 
results when the normal modes, r, are assumed to be 
independent; we get terms of the type 

X ff  exp [ i (Azl-  A'z i - lr(zl - z~)] 
r 

× If(s, lr)12dzldZ'~. (8) 

A and A' are here combinations of 'anpassungen'. If 
A=A'  the kinematical value of the diffuse intensity 
If(s, A)I 2 results. If If(s, A)I 2 is a slowly varying func- 
tion of A, the summation over r will yield J(z~ -Za) and 
the intensity reduces to a sum over intensity contribut- 
ions from different slices with common form factors 
If(s, 0)12 etc. or, slightly better, If(s, (s)l 2 - the value 
of the kinematic intensity at the Ewald sphere: 

I(s+h)/z 

=(1/z)(1/2k)ZReX SI-" {X S(2) afS(1)f+a,o} 
g g d0  f 

× (SS*(2)hf.S*(1)s,+a,,o} d z l ( f ( s - g ) f * ( s - g ' ) ) ,  (9) 
f 

where the abbreviated arguments, 1 and 2, stand fo~ 
(k0, z~) and (k0 + s, z-z~)  respectively. In the form fac- 
tor parts, the appropriate averages over crystal variab- 
les, rj, are indicated, these correspond to the 'structure 
factors for the Kikuchi lines' introduced by Kainuma 
(1955). The terms with g # g' will be called 'interference 
terms'. The calculation of the form factors ( f ( s ) f * ( s -  
h)) is discussed further in § 5. 

It might appear, as indicated by Fujimoto & Kainu- 
ma (1963) when discussing their intensity expressions, 
that the rapid variation of the inelastic scattering cross 
section for small s, i.e. s of the order of the A's in 
equation (8), would invalidate the procedure leading to 
equation (9). This, corresponds, however, to very small 
angles (s< 10 -1 A -x or 20< 10 .3 radian), so that the 
matrix elements Sha(z) and Sg0(1) refer to virtually the 
same direction of the central beam. The sum in (5) will 
then be 

_ 2: Snf(k0, z -  zl)Sfo(ko, zl) = Sho(ko, z) 
f 

which is independent of Zl, so that the intensity expres- 
sion (9) is still valid. Similar arguments can be pro- 
duced when I r i s - h ,  OI 2 varies rapidly for small s and 
(, as in phonon scattering; this case will not be treated 
here, however. Only when the 'diffuse' intensity func- 
tion varies rapidly with the z component of the scat- 
tering vector between the spots, as for sharp streaks in 
or near the equator plane, do we expect (9) to break 
down. 

It now remains to discuss the treatment of the crystal 
variables, rs, as parameters during the calculation of the 
interaction with the Bragg scattering; with the average 
over rj performed only in the form factor part, f ( s - g )  
f ( s - g ' )  as in equation (9). Although we shall treat in- 
elastic scattering (from electronic excitations )the deve- 
lopment will be applicable also to scattering from ther- 
mal motion. 

The total system of the crystal, rj, plus incident elec- 
tron, r, is described by a wavefunction @ which can be 
expanded in the eigenfunctions of the crystal 

qS(r, r j )= X ~'n(r)~0n(rj'). 
tl 

Let us define an operator ~u = ~,(r, rj) such that 

~,(r, r~)l~oo(rj))= I~(r, r j ) ) .  
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We have 
v/n(r) = j'q)*(rj)qS(r, ry)drrl = S~o*,g/~oodzr~ = (nl ~'10), 

e.g. ~,0(r) = (01~'10) 

and S I~,n(r)l/= (0l~'~'*10) • 
n 

q5 is a solution of the Schr6dinger equation 

(V~ z + k Z - ( H o  - Eo)2m/h2+ U(r, rj)}~ = 0 ,  

where H0 and E0 are the Hamilton operator and ground 
state energy of the scattering system and U was intro- 
duced in equation (1). The corresponding integral 
equation for scattering is quite analogous to (lb); see 
e.g. Lippman & Schwinger (1950); 

qS(r, r j )=  ~°(r)q)0(rj) 
+ j'G(r, r', r j ) f ( r ' ,  rj)~(r' ,  rj)dr', 10) 

where the Green's function now depends on rj through 
the operator H0-E0  in the energy denominator: 

G(r, r', rj) = (2z0-3 ~ exp [ ik( r - r ' ) ]  
× (/¢2-- k 2 -  ( E 0 -  Ho)2m/hZ)-ldl¢. 

Equation (10) can be rewritten as an equation for the 
operator g/, 

~,(r, r~)= ~,°(r)+ f G(r, r', r~.)U(r', rj)~(r', r j )dr ' ,  ( l l )  

which is equivalent to equation (lb) if the operator 
(Eo -Ho)  can be neglected in the Green's function. In 
order to find the criteria for this, we may bring the 
integral equation (11) on the form (A2) (Appendix I). 
By proceeding exactly as in Appendix I, noting that 
H0 commutes with r, we find that the only change to be 
made in the formulae (A 1) and (A2) is the introduction 
of an excitation energy operator, through the substitu- 
tion. 

(s --+ (s - ( Ho - Eo)(Em/hE)/Etc- (s - (( Ho) . 

To estimate the order of magnitude to be expected, 
we may use an excitation 0 ~ n with energy 20 eV as 
an example; this corresponds to 

(nlC(Ho)ln)~2.10-2 A - a .  

The effect of the addition ((H0), to the excitation 
error will be to substitute the value of the kinematical 
intensity at [s, ((H0)] for its value at (s, 0); cf. the re- 
mark following equation (8). This will only lead to 
significant change in the form factor when s is of the 
same order of magnitude as ((H0), i.e. for very small 
angles*. 

The above development may also be carried out by 
taking U(r, rj) as a time dependent operator, exp ( - i  
Ho t/h) U(r, r,) exp (i Ho t/h), in the time dependent 
wave equation. This may be used to extend the formal- 
ism given by van Hove (1954) for purely kinematical 
scattering to include interaction with the Bragg scat- 
tering. 

• Calculations of the kinematic inelastic scattering at very 
small angles were presented at the I.U.Cr. Congress in Rome 
(Gj~nnes, 1963). 

Our equations for the amplitude (6) and intensity (9) 
can be brought into the forms given by previous authors 
by expansion of Ua or f i n  eigenfunctions for the Bragg 
scattering. The advantage of our presentation appears 
to lie in a more simple description in terms of succes- 
sive forward scattering processes. This picture lends 
itself very readily to representation by diagrams, of 
which examples are given in the following section. Also, 
a more complete separation in the Bragg scattering cal- 
culations, and an essentially kinematic calculation of 
diffuse scattering form factors has been achieved. 

We may remark here that the sum over the If(s)[ z 
terms, which are the most important ones for inelastic 
scattering, in the integrand of equation (9) equals the 
intensity expression for diffraction from a bi-crystal with 
a tilt boundary of angle s/2k at the level Zl. Higher order 
terms in Ua can be described in a similar analogy 
through several tilt boundaries at Za, zz etc., so that the 
expressions for intensity contributions from higher or- 
ders upon integration over zl, z2 become similar to the 
intensity expression for for a mosaic crystal with a 
'mosaic spread' given by (If(s)12). Hence we expect 
these contributions around the Bragg reflexions to be 
proportional to the kinematical value for the integrand 
intensity, from which we can explain Kuwabara's  
(1963) measurements of the contributions to the inte- 
grated intensities of powder lines from electrons which 
had suffered energy losses. With increasing energy loss, 
the intensity contributions to different lines became 
proportional to the kinematical intensities, as would 
be expected from the above picture if the higher 
energy losses are assumed to arise mainly through 
multiple scattering (Marton, Simpson, Fowler & 
Swanson, 1962). 

3. The two-beam case 

To gain information on the pattern of diffuse scattering, 
let us now consider the general two beam case, i.e. 
when one Bragg reflexion, h, is excited by the incident 
beam and there is Bragg interaction between the dif- 
fuse scattering towards k0 + s and k0 + s + h. Several as- 
pects of this case have been studied before, notably the 
Kikuchi line case (Kainuma, 1955) and the electron 
microscope contrast from regions close to the diffract- 
ion spots (Fukuhara, 1963; Fujimoto & Kainuma, 
1963), and we shall here confine ourselves to a general 
discussion, mainly of the intensity distribution I(s), 
near the central spot. 

From equation (6) 

~(s, z) = { (S(2)00S(1)00 + S(2)ohS(1)ho)f(s) 
0 

+ S(2)00S(1)~0f(s - h) + S(2)0~S(1)00f(s + h) }dza 

=- (A + B) f (s )+ C f ( s - h ) +  Of(s+h) .  (12) 

These four terms can be represented by the diagrams 
of Fig. 2. A and D are the terms left when Bragg scat- 
tering of the incident beam is neglected, as in the usual 
treatment of Kikuchi lines; the resulting intensity con- 
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tributions [A[ 2, [D[ 2 and Re(AD*) represent a white 
line, a dark line and an asymmetric band respectively. 
When s is small; i.e. near the diffraction spots, the 
terms involving f(s) will be the most important in in- 
elastic scattering, whereas the last two terms, C and D, 
will dominate the thermal scattering. In disorder scat- 
tering all four terms will be important. The inelastic 
scattering is usually by far the strongest; the [A+BI 2 
term and the corresponding dark field term will then 
determine the intensity distribution and electron mic- 
roscope contrast from diffuse scattering close to the 
spots. The calculation of the amplitudes A, B, etc. is 
straightforward; the main steps are indicated in Ap- 
pendix II. The resulting intensity terms [A+B[ 2, 
2 Re[(A +B)C*] etc. can each be divided into a thick- 
ness independent term plus four terms which oscillate 
with thickness and with the direction of scattering. As 
only some of the resulting 30 intensity terms have been 
given before (Fujimoto & Kainuma), a full list is given 
in Table 1 with the corresponding scattering factors 
(]f(s)[) z, ( f ( s ) f* ( s -h ) ) ,  etc. indicated in the first col- 
umn and the thickness dependent factors given in the 
top row. The excitation errors (1 and (2 describe the 
directions of the incident and the scattered beam in the 
usual way, 4 A~ = ~ + 4 V 2, 4 A 2 = (1(2 + 4 V~. 

For thick crystals, the thickness independent terms 
will determine the intensity distribution. In the limit 
(1 ~ ~ ,  these tend to the well known expressions for 
the Kikuchi-line profile. It is seen, that also in the 
general ease considered here, the line profile will be 
of the form given by Kainuma (1954); viz. a+b/A~+ 
c(2/A~, that is a constant, plus a symmetric, plus an 
asymmetric term. The magnitude of these contribu- 
tions depends now, however, on the direction of the 
incident beam, i.e. on (x. In particular it is seen that 
an asymmetric part is contained also in the (If(s)[2) - 
term, whereas in the standard Kikuchi-line expression 
the asymmetric part arises only through the interfer- 
ence term (f(s)f*(s+h)) .  When the incident beam 

satisfies the Bragg condition ((1 =0) the Kikuchi-line 
vanishes - only the constant term is left. 

Of the thickness dependent parts, the third column 
(upper sign) will be of the greater importance for mod- 
erately thick crystals, as the denominator here can be 
zero, for (2=(1. Hence this term is expected to be 
responsible for the oscillations in diffuse intensity as 
a function of angle, e.g. the fine structure in the Kikuchi- 
lines observed by Uyeda, Fukano & Ichinokawa (1954) 
and also to include the main contribution to the mic- 
roscope contrast from diffuse scattering. When (x -+ 
these terms vanish; the only oscillating parts are then 
those containing] sin (2AE)/2AEZ, which for thin crystals 
may lead to the very weak fine structure of the Kikuchi 
line discussed by Fujimoto & Kainuma (1963). 

Fig. 3 indicates the intensity distribution across a 
Kikuchi-line pair for four values of (a. The intensity 
oscillations are seen to be centered around (2=(1, i.e. 
lines through the central and the diffracted spot. It is 
also seen that the asymmetric parts tend to increase the 
intensity between these lines when (1 < 0 (the diffraction 
spot outside the Laue circle) and to reduce the intensity 
in this region when (1 > 0. 

-h 

./ - ./'8 / 
0 e h h 

h ° 

c D 
Fig.2. Diagrams representing the four terms of equation (12). 

Form factor 

[f(s) l 2 

Table 1. Coefficients for the different,form factors and oscillating parts in the two-beam cases 

Thickness-dependent parts 

sin (A1 T-/12)z sin 2A2z sin 2/11z 
1 cos (/11 +-/12)z 

(/11 -T- /12)z 2A2 z 2/11z 

(1(2/12 /32/12 +__ A1/12) /32(1((1 -- (2) V2(2((2 -- (1) ½+ 
8AlZA22 4AlZA2Z 8AIZA22 8A~ZA22 

i f ( s -  h)l 2 v2(2v2 "~" (22) -- v4 -- V2(2V2 + (22) 1)4 
8/1 12/122 8/1 12/122 8.,412/122 4A 12/122 

If(s+h)l  z As for [f(s--h)[2 but with interchange of subscripts 

/3(/12(2 q-/122(1) /33((2 -- (1) /33((1 -- (2) /3(/12(2 +/122(1 ) 
f (s) f*(s--  h) 2/112/122 4/112/122 2A 12A22 2A 12/122 

f ( s ) f* ( s+h)  As for f ( s ) f * ( s - h )  but with interchange of subscripts 

/32(1(2 /32((1(2 -T- 4/11/12) --/32(1(2 -- u2(1(2 
f(s  -- h)f*(s + h) 4/112/122 8/112/122 2A 12/122 2A 12,422 
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The intensity distribution, I(s + h), around the Bragg 
spot (the dark field) can be obtained in the same way. 
The (If(s)] 2) part is complementary to the correspond- 
ing bright field term. This is not the case for the 
(If(s+h)lZ)-terms, as these scattering factors also lead 
to diffuse scattering toward s+2h  and s - h .  Neither 
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Fig. 3. The (If(s)12)-contributions to the diffuse intensity in the 

two-beam cases• Intensity profiles, excluding the form factor, 
as a function of (2, for different values of (l :(a) (1= oo, 
(b) (x = 2v, (c) (1 = 0, (d) (1 = - 2v. Full-line: thickness inde- 
pendent part; broken line: including oscillating term for z= 
2rt]v. Right hand side, excess; left hand side deficient part. 
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Fig.4. Diagrams representing two amplitude terms for a Ki- 
kuchi-line pair, g, when the reflexion h is excited by the 
incident beam. 

are the interference terms complementary; this is dis- 
cussed in more detail in § 5. 

To conclude this section, let us mention the ease 
indicated in Fig. 4; here a Kikuchi-line pair g is con- 
sidered when the reflexion h is excited by the incident 
beam. There will, as in the case above, be four am- 
plitude terms, of which two, S(2)00S(1)00f(s) and S(2)0g 
S(1)hof(s--g+h), are shown in the figure. If  we 
neglect the interference terms, the line profile will con- 
sist of a white line and a dark line term with the same 
width as in standard Kikuchi-line expressions. The 
relative magnitude of these parts will depend on the 
form factors, and vary along the line pair; the regions 
where the dark line term dominates are indicated in 
the figure. Such reversal of contrast along a Kikuchi 
line has been observed in this laboratory (Watanabe & 
Gjennes, 1965). 

4. Intensity distribution in a three-beam case 

Although the two beam case reveals most of the essen- 
tial features of the interaction between diffuse and 
Bragg scattering, in actual cases it is often necessary to 
take more beams into account. In this section we out- 
line a calculation of the inelastic scattering from mag- 
nesium oxide between the 200 and 2.00 reflexions when 
the incident beam is parallel to the (200) planes. 

The amplitude contributions according to equation 
(6) can be written in matrix form: 

S(2)h0 S(2)hh S(2)h~ S(1)n0 f(s) (13) 
S(2~0 S(2)~0 S(2)~ S(l~0 

+f ( s  + h)-terms, 

where we may take the matrix elements in the form 
Z S(0~ ') exp [i~mz] etc. where ~m is the eigenvalue ('an- 
m 

passung') for the mth branch of the dispersion surface. 
The amplitude terms can then be represented by the 
coefficients of the six different oscillating parts (only 
two branches of the dispersion surface are excited by 
the incident beam in the symmetrical case), 

exp [i~mzl] exp [i~n(z-zl)] , 

where r/n are the eigenvalues for the beams s, s+h ,  
s - h .  In the intensity expression we then have, before 
the integration over za, the thickness dependent factors 

exp [i(~m-~ra')za] exp [i(qn-~n') ( z - z l ) ] .  

Through the integration over zl a denominator, 
~ m -  ~m' - r/n + r/n', results. The most important terms 
are those for which this denominator can be small; 
firstly m=m',  n=n', which gives the constant terms. 
The main oscillating terms arise when m=n, m'=n'; 
these will produce oscillations around ~z = ~l (analogous 
to the third row in Table 1). The terms with m=m',  
n=n' give weak oscillations around the Kikuchi-Iine 
position. The denominator may be zero also at some 
values of ~2~'1 when two branches of the dispersion 
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surface are separated by a distance An, n" equal to the 
distance Am, ra between two of the points excited by 
the incident beam. 

In this way the constant term and the most important 
oscillating terms were readily found, once the three- 
beam solutions for the eigenvalues and the correspond- 
ing elements of the scattering matrix had been ob- 
tained, by solution of the dispersion equation and fit- 
ting of boundary conditions in the usual way. 

The form factors, including (f(s)f*(s+h)) were ob- 
tained from the one-electron form factors given by 
Freeman (1959). Anomalous absorption, based on the 
values found by Lehmpfuhl & Moli~re (1962), were in- 
cluded in the matrix elements. The resulting intens- 
ity distribution shown in Fig. 5 corresponds to a 
section parallel to the line through the 200-reflexion 
and the central spot, at a distance ½(200) from this line. 
The experimental curve is a photometer trace along the 
same line on a diffraction pattern taken at 80 kV 
(Fig. 5). 

The main discrepancy between the experimental and 
calculated curve lies in the magnitude of the oscillat- 
ions in the central region, i.e. far from (2= (1. Also in 
patterns involving other reflexions it was found that 
the oscillations were stronger than expected in such 
regions. Several reasons for this have been considered: 
effect of higher order terms, failure of the assumption 
of independent normal modes, and the effect of a non- 
uniform distribution of diffuse scatterers. The latter 
effect has been suggested by Heidenreich (1963) who 
invokes plasmon scattering in an 'advance excitation 
zone' in order to describe the electron-microscope con- 
trast from diffuse scattering. Although such a mechan- 
ism does not appear necessary to explain the micro- 
scope contrast when the objective aperture is close to 
a diffraction spot, it would be of importance for the 
intensity distribution and microscope contrast at some 
distance from the spots, as this would reduce the effect 
of the denominator (~m-~ra ' - r /n  + r/~') z arising from 
the integration over zl. In order to resolve this question, 
and also to investigate the effect of multiple inelastic 
scattering, intensity measurements with energy analysis 
would be desirable. 

It is also seen that the inclusion of the interference 
or (f(s)f*(s+h))-term does not improve the agree- 
ment. This is somewhat difficult to assess; the justific- 
ation for using one-electron form factors in this term 
may be doubtful; also multiple scattering effects must 
be expected in the background. 

all Brillouin zones from one particular form factor 
according to equation (7) (omitting the average over 
zl). We obtain for this sum 

Re Z' Z' Z" (.f(s-g)f*(s-g'))S(2)n/S(1).f+g,o 
h f f 

S*(2)ny'S*(1):+g',o 
= Re ( f (s  - g)f*(s - g')) Z" S(1)/+g, oS*(1)/+g', o 

f 
(14) 

by using the unitary property of the scattering matrix. 
For g = g '  the last sum is unity, so that the I f ( s -g) l  z- 
terms are complimentary when the contributions from 
all Brillouin zones are included. The interference terms 
give rise to an excess or deficient intensity, which in 
the two beam case becomes: 

- 2 ( f ( s ) f* ( s -h ) )  (1 - sin (2Alz)/2A,z) Vh(a/((f + 4V~) 

when the average over Zl has been taken. The last 
factor, which depends only upon the direction of the 
incident beam, is negative when the reflexion, h, is 
inside, and positive when h is outside the Laue circle 
and has maximum magnitude for ]~xl =2vn. 

When several beams are excited, as when the incident 
wave is along a principal direction, many of the beams 
may be in phase, and the last sum (14) can be apprec- 
iable. As an example, consider diffuse scattering from 
short range order in cubic alloys. Here the diffuse 
scattering amplitudes ./'sro(s+h) have the same phase 
in all Brillouin zones; they vary with h only through 
the atomic scattering factor difference )CA--fB. Hence 
the interference form factor ( f ( s - g ' ) f ( s - g ' ) )  is al- 
ways positive. In order to obtain an estimate of the 
modification to the kinematical intensities Ifsro(ll0)l 2 
through Bragg scattering, let us include only these 
scattering processes which are indicated in Fig. 6(a). 
That is, Bragg spots beyond the four 200's, diffuse 
scattering amplitudes beyond 110 and Bragg interaction 
between the 110 and 310 spots are all disregarded. We 

.~. SS ~ 

5. Interference terms: 
an example from disorder scattering 

As mentioned in § 3, the bright and dark field terms 
are not all complementary. This was pointed out for 
the electron-microscope contrast in the two-beam case 
by Fujimoto & Kainuma (1963). A general expression 
for the total excess or deficient diffuse scattering can 
be found by summing the intensity contributions in 

(200) K 
q I i 

diffraction variable 

Fig. 5. Calculated and experimental intensity curves for a mag- 
nesium oxide crystal, incident beam in the (200) plane. 
Section parallel to (200) at a distance -}(200) from the central 
spot. Broken curve: experimental curve, primary energy 80 
kV. Full-line: calculated intensity for 630/~ thickness, with- 
out interference terms. Dash-dot:  calculated intensity includ- 
ing interference terms. K is Kikuchi-line position. 
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then get for the intensity at 110, remembering that 
~U2oo = Vozo etc. owing to symmetry" 

[V0(1) + 2V200(1)]fsro(110) x c.c. 
= { 1 + 4 Re[gt0(1)~%0(1) }lfsro(110)12 

and similarly for the diffuse intensity at (100) [Fig. 6(b)]" 

[V0(1) + ~uz00(1)].~ro(100) × c.c. 
= [1 - 31 ~'0( 1)1 z + 2 Re ~u0(1) ~'~00(1 )] I f~r o( 100)1 z . 

The fsr0(ll0)-contribution to the intensity at 110 is 
seen to be above its kinematical value, when Regt0~,z00 
>0,  even though there are contributions also to the 
(310)-spots. This shows that the total diffuse intensity 
is considerably enhanced, mainly through interference 
between the terms Vz00(1)fsro(110) and ~o2o(1)fsro(1 10) 
[Fig. 6(a)]. 

The fsro(100) contributions to the scattering are also 
spread out over a number of spots, and here there is 
not such an effective interference to build up the total 
intensity. If we take Igt200(1)] z to be ~ and neglect 
q/0~%o, the dynamic correction factors to the short 
range order scattering become: 

1 at 110, ~ at 100. 

Calculations for particular alloys (AuAg, CuAu3) in- 
cluding more interactions lead to results quite close 
to these estimates; so the 110 is expected to be ap- 
preciably stronger than the 100 diffuse peak, as is also 
seen in the diffraction patterns from these alloys. Fur- 

0 2 0 (  *-'--'120 

2 " ~  310 100300 
000 200 000 200 

(a) (b) 

Fig. 6. Diagrams representing short range order scattering con- 
tribution to 110 (a) and 100 (b) in a face-centered alloy. In- 
cident beam along [001]" only diffuse scattering processes 
are indicated. 

~3 

4rrs in  0 / X 
\x 

Fig.7. The inelastic form factors (If(s)l 2) and (If(s-h)l 2) 
(fulMine curve) and (f(s)f*(s-h)) (broken curve) for mag- 
nesium oxide; h = 200, s parallel to (200). 

ther work on dynamical corrections to short range 
order diffuse scattering is in progress in this laboratory 
(Fisher, 1965). 

For thermal and inelastic scattering the phase rel- 
ationships between amplitudes in different Brillouin 
zones is more involved. In phonon scattering the am- 
plitudes will, to the first approximation, depend on the 
scalar product a(s + h), where a is the phonon polariz- 
ation vector. For a primitive lattice: 

f .(s-h)f~*(s-g)= + If~(s-h)l. If .(s-g)l,  

where the upper and lower signs should be used when 
the a-components of s + h  and s - g  have the same or 
opposite directions respectively. We may note that the 
two terms ~'200(1)f,(l10) and ~Uozo(1)f,(llO), referring 
to Fig. 6(a), will always cancel. 

For inelastic scattering the interference form factors 
( f ( s ) f * ( s - h ) )  have previously been studied in con- 
nection with the anomalous absorption, where they 
occur as the integrand in the calculation of the absorp- 
tion coefficients C~,0 (Yoshika, 1957; Gjonnes, 1962). 
The excess or deficient intensity calculated above cor- 
responds, of course, to enhanced and reduced abs- 
orption respectively. The dependence on the excitation 
error is reflected in the two-beam case into asymmetry 
of the direct beam as a function of the excitation error 
- a well known result from the theory of anomalous 
absorption. 

Calculations have so far been based upon one- 
electron wave functions for free atoms or ions; an ex- 
pression in terms of Hartree-Fock functions has been 
given by the present author (1962)" 

<f(s ) f*(s-  h)) 

S f m ( h ) - f m ( s ) f m ( h - s ) -  S,' fmn( s ) fmn(h - s )  
m m # n  

s2(h-  s) 2 , 

where the f ' s  are one-electron scattering factors and 
the last sum is to be taken over  wave functions with 
the same spin only. For non-primitive unit cells, a 
factor exp (ihRj) should be included for an atom at 
Rj. Fig. 7 shows the result of a calculation for mag- 
nesium oxide with h = 2 0 0  based on the one-electron 
scattering factors given by Freeman (1959). The inter- 
ference form factor is negative in a roughly circular 
region around s = h/2; it appears more sensitive to the 
wave functions and state of ionization than the [f(s)l 2. 

At small values of s, we must expect plasmon ex- 
citation to be important.  Fukuhara (1963) has men- 
tioned the possibility of 'Umklapp'-processes I f ( s+  h)] 
in plasmon excitation. So far no calculation has been 
made for such a process, which should determine the 
interference term in plasmon scattering, and the plas- 
mon contribution to anomalous absorption. 

6. Multiple scattering 

Our theory has so far taken only single diffuse scatter- 
ing into account. Extension of the theory to include 
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higher order scattering is straightforward, but calcul- 
ations become laborious in the general ease. In the 
simple Kikuchi-line case when Bragg scattering of the 
incident beam and of the intermediate diffuse scattered 
beam are neglected, double scattering expressions can 
be represented as in Fig. 8(a) which leads to the same 
form of the profile function as before, but with the 
form factors replaced by the intensity convolutions 

<if(s)21 >~r <lf(s)12>, <lf(s)12>*<f(s)f*(s-h)>. 

The third-order diffuse scattering terms represented 
by Fig. 8(b) are included when anomalous absorption 
is taken into account in the matrix elements S~o, etc. 
This may lead to an additional asymmetry in the 
Kikuchi fine, which, however, will be largely inde- 
pendent of the position of the line, in contrast to the 
asymmetry discussed in § 5. 

7. Conclusion 

The method presented here for calculation of diffuse 
scattering in the presence of Bragg scattering follows 
the multiple scattering approach by Cowley & Moodie 
(1957), and Fujiwara (1959). One advantage of this 
appears to be that the various terms can be represented 
very simply by diagrams which are of help in analysing 
particular situations and picking the most important 
terms. The main theory is independent of the nature of 
diffuse scattering, although normal modes for inelastic 
scattering have been assumed to be independent. Ex- 
tension to multiple diffuse scattering is feasible at least 
in simple cases; appreciable multiple scattering will 
probably occur only for inelastic scattering where it is 
possible to avoid multiple scattering experimentally 
through energy analysis. 

Apart  from the application to Kikuchi and similar 
patterns and to correction of diffuse scattering for 
dynamic effects, it is hoped that the present theory will 
be of value in the study of the interference terms which 
depend on the Bragg interaction and do not appear in 
kinematic diffuse scattering. In particular, the study of 
these terms for inelastic scattering offers an alternative 
way of investigating the anomalous absorption of 
electrons. 

for scattering [(equation l(b)] for e.g. a continuous set 
of waves, 

~,(s, z)=J(s)+ i l ds' Ii (v(s-s')/2k) 

exp [i~s(Z- z')]gt(s', z')dz' (A2) 

where the integrand in the ds'-integration is of the type 
called l(h) by Fujiwara (1959). It may be of interest 
to quote the integral equation for Bragg scattering 
matrix elements between discrete waves, taking z0 as 
the entrance surface: 

Nng(Z-- Zo) = Jhg exp [i~n(z-- z0] 
+ i Z J" exp [i~h(z- z')]~,.rg(Z'- z°)dz ' 

f 
where ~n is the excitation error of the reflexion h. The 
Born approximation corresponding to this expression 
was given by Kato (1963). 

APPENDIX II  

Let us write the elements of the two-beam scattering 
matrix for an excitation error, ~, and a Fourier poten- 
tial vn = v, as 

Soo(z)=Sgh(z)=cos Az + ix sin Az, Sho(Z) 
= Sob(Z) = iy sin A z ,  

where x=( /2A ,  y=v/A ,  A=~/(Q2)2+v 2, and a factor 
of modulus unity has been omitted. We then have in 
equation (12), e.g., 
A = (cos A2z2 + ix2 sin A2z2)(cos Alzl + ix1 sin Alzx), Z2 = 

z - z l ,  which can be written as a sum of sines and 
cosines ofAlzl  + A2z2 = ~ and A~za - A2z2 =fl; in this way 
we obtain 
A +B=½(1 +xIx2+YlY2) cos c~+(1 -XlX2-YaY2 cos r +  

i(xl +x2) sin ~+  i(xlx2) sin c~ 
C=½{ylx2(cos a - c o s  fl)+iya (sin ~+sin  fl)} 
D = ½{yzxa(cos ~ - c o s  r ) +  iy2(sin ~ - s i n  fl)}, 
which leads to the intensity formulae summarized in 
Table 1. 

APPENDIX I 

s-g 

By performing the integration over x~ in equation (lb) 
in the manner shown by Fujiwara (1959), i.e. by choos- 
ing integration contours consistent with waves travel- 
ling along the positive z direction and neglecting back 
scattering, we obtain: 

G(r, r') ~ (i/4z~ 2) j" exp [is(Q-e')] exp [iks(z-z')]ds/2k 
Z> Z' 

0 z < z '  (A1) 

where ks=(k2-s2)*=koz+fs ;  (s is here an excitation 
error. On introducing this form in the integral equation 
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Fig.8. Diagrams showing multiple diffuse scattering. (a) 2- 
order diagram representing double incoherent scattering. (b) 
3-order diagram including virtual inelastic scattering leading 
to anomalous absorption. 
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The Conformation of Non-Aromatic Ring Compounds.* 
XVI. The Crystal Structure of 2 p, 3 a-dichloro-5 a-cholestane (Modification p) at -120 °C 

H. J. GEISE, C. ROMERS AND ELISABETH W. M. RUTTEN 

Laboratory of  Organic Chemistry, University of  Leiden, The Netherlands 

(Received 24 May 1965) 

The crystal structure of 2p,3e-dichloro-5ct-cholestane has been determined by comparison with the 
isomorphous structure of the corresponding 2B-chloro-3e-bromo-derivative. The unit-cell dimensions 
at - 120 °C (of the former compound) are: a = 13.31, b = 10.47, c = 9"88/~; p = 113 ° 37'. The space group 
is P21 and Z =  2. 

The rings A, B and C of the steroid skeleton are in the chair form. The conformation of ring D is 
best represented by a half chair with approximate symmetry C2. The angle between the bonds C(2)- 
C1(2) and C(3)-C1(3), having an average length of 1.81/~, is 157 °. The mean value of the carbon bond 
angles (111.2 °) within the cyclohexane rings deviates significantly from the ideal tetrahedral value and 
this deviation is connected with the flattening of the perhydrophenanthrene skeleton. The bonds 
C(10)-C(19) and C(13)-C(18) are not strictly parallel, but are inclined to each other at an angle of 9 °, 
which is an indication of the slightly bent shape of the molecule. A proof of the structures and con- 
figuration of 2/~-chloro-3~-bromo- and 2p-bromo-3ct-chloro-5~-cholestane is given. 

Introduction 

The investigation presented in this paper is a part of 
a series of physico-chemical and conformational studies 
on steroid compounds and on more simple six-mem- 
bered ring systems, such as cyclohexane and dioxane 
derivatives. For  a complete survey of this work we 
refer to the preceding papers of this series and to the 
publications cited therein. 

* Part XIV, Kalff & Romers (1965); Part XV, Romers, v. 
Heijkoop, Hesper & Geise (1965). 

In a preliminary communication on the optical prop- 
erties, cell dimensions and space groups (Geise, Romers 
& Hartman,  1962) we announced the crystal structure 
determinations of 2fl,3a-dichloro- and 2a,3fl-dichloro- 
5a-cholestane. It proved possible to obtain more accur- 
ate data at low temperature of the 2fl,3a-dichloro com- 
pound and of the 2cq3fl-dibromo derivative, the latter 
being isomorphous with 2a,3fl-dichloro-5a-cholestane. 
Meanwhile the crystal structure of the synthetic steroid 
4-bromo-9fl,10a-pregna-4,6-diene-3,20-dione was car- 
ried out and a short communication of this work ap- 
peared elsewhere (Romers, v.Heijkoop, Hesper & 
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